

Situating spatial ability development in the Craft and Technology curricula of Swedish compulsory education

Ting Jun Lin

KTH Royal Institute of Technology, Sweden

Jeffrey Buckley

Technological University of the Shannon, Ireland

Lena Gumaelius

KTH Royal Institute of Technology, Sweden

Ernest Ampadu

KTH Royal Institute of Technology, Sweden

02. Methodology

03. Results

04. Discussion and Conclusion

0 1

0 1

Situating spatial ability development in the Craft and Technology Corricula of Swear compulsory education

0 1

You're standing on the surface of the earth. You walk one **Splatia uthon** where you started. Where are you?

...the ability to **generate, retain, and manipulate** abstract visual images. (Lohman, 1979, p. 126)

...the ability to make use of simulated mental imagery to solve problems—**perceiving**, **discriminating**, **manipulating**, **and recalling** nonlinguistic images in the "mind's eye. (Schneider and McGrew, 2018, p. 125)

...innate ability to **visualise** that a person has before any formal training has occurred.

(Sorby, 1999, p. 21)

...the performance on tasks that require: (a) the mental rotation of objects; (b) the ability to understand how objects appear in different **positions**; and (c) the ability to conceptualise how objects **relate to each other in space**.

(Sutton & Allen, 2011, p. 5)

...the ability to visualise, manipulate and interrelate real or imaginary configurations in space. (Gaughran, 2002, p. 3)

Shea et al. (2001)

13 years old

18 years old

Ο

23 years old

STEM

33 years old

N=563

Scholastic Aptitude Test (SAT),

Differential Aptitude Test (DAT),

and spatial ability tests.

Sorby et al. (2018)

First-year college students

N= 3,948

Spatial ability training

 $\left(\right)$

1

-0--00 -0000 -00-0--0-00-Ο × Ο Ο Mathematical problem solving

5 years old

Verdine et al. (2014; 2017)

5 years old

7 years old

Gilligan et al. (2017)

Craft and Technology curricula

Finland Slovenia Estonia Iceland Ireland Sweden UK...

Methodology

Context Compulsory education (≈7-16 years old).

Q Data collection Curriculum document from the Swedish National Agency for Education

E. Data analysis Qualitative research method

02 Methodology

Identify spatial-related content

	COMPULSORY SCHOOL				
Content	Curriculum for the compulsory school, preschool class and school-age educare	S	Subject	Codes	Coding method
Developed	forms of handicraft	С	Craft	Handicraft	In-vivo
techniques	, such as moulding, weav	/ing			
and cutting	and turning metal.				
What comp	o <mark>uters are used for an</mark> d so	ome T	echnology	Object	Descriptive
of the basic	c component parts of a			structure	
computer f	or entering, retrieving and	b			
storing information, such as keyboards,					
monitors a	nd hard disks.				

02 Methodology

Categories

- Graphical components: "symbol" and "model".
- Pictorial components: "picture" and "materials".
- Manufactured components: "handicraft" and "artefacts".

		Visual dimension			
		Graphical	Pictorial	Manufactured	
Epistemic dimension	Conceptual	Graphical- conceptual	Pictorial- conceptual	Manufactured- conceptual	
	Procedural	Graphical- procedural	Pictorial- procedural	Manufactured- procedural	

- Conceptual knowledge: concepts, principles, facts of an entity.
- Procedural knowledge: applying, carrying out hands-on activities.

Content	Subject	Codes	Coding method
Developed forms of handicraft techniques, such	Craft	Manufactured,	Axial
as moulding, weaving and cutting and turning		Procedural	
metal.			

What computers are used for and some of the	Technology	Graphic,	Axial
basic component parts of a computer for		Conceptual	
entering, retrieving and storing information, such			
as keyboards, monitors and hard disks.			

	Craft(58.1%)		Technology (34.4%)		
Codes	Codes frequency	Occupation of codes among the spatial- related (percentage)	Codes frequency	Occupation of codes among the spatial- related (percentage)	
Graphic,	9	14.1%	14	29,17%	
conceptual					
Graphic,	2	3.1%	10	20,83%	
procedural					
Pictorial,	11	17.2%	4	8,33%	
conceptual					
Pictorial,	14	21.9%	3	6,25%	
procedural					
Manufactured,	17	26.6%	7	14,58%	
conceptual					
Manufactured,	11	17.2%	10	20,83%	
procedural					
In total	64	100%	48	100,00%	

Discussion and Conclusion

Discussion and Conclusion

What we did

The manifestation of spatial ability development in Swedish national craft and technology curricula is supported by the conceptualization of spatial ability by researchers.

However,

We cannot draw any simple conclusions about the effects of national curricula on students' performance.

But at least,

Bring up the awareness of how the spatial ability could be developed in the craft and technology curricula.

And we hope,

More qualitative studies in a broader context should be done in the future.

You're standing on the surface of the earth. You walk one mile south, one mile west, and one mile north. You end up exactly where you started. Where are you?

Elon Musk, founder of SpaceX. Photograph: Brendan Smialowski/AFP/Getty Images

North Pole Vnere else? of 1 mile. Any point a mile north of this circle is the solution.

Thank you

