Characterising Structure-Behaviour Reasoning within a Chemical Design Challenge: 'Green Bubble Soap'

Sebastiaan de Lavoir Marie-Jetta den Otter Erik Barendsen Marc de Vries

Technology Education and Learning through Chemical Design

- Design is traditionally a part of Technology Education
 - Particularly in England and Wales: Design and Technology
- Most of the design challenges are of an 'industrial design' or 'physical design' type
 - Not many examples of chemical design in Technology Education.

 Trend towards STEM can change that when Technology Education is more related to Science Education, including Chemistry Education.

Potential strength of STEM: design-based learning

- Design challenges can support the learning of both scientific and technological concepts
- In both domains the function-structure relation is an important one (NGSS, 2013)
- Both pupils and teachers have difficulties with this concept (see several research studies)
- Chemical Technology: design and synthesis of molecules and materials (via novel routes), analysis and optimisation
 of processes, all for people to extend their abilities and satisfy their needs and wants (Talanquer, 2013).
- This study: try out a chemical design challenge to see if learning function-structure thinking can be enhanced
 - Context: Chemistry Education, but in principle could also have been done in Technology Education

Function-Behaviour-Structure framework

- 1. Formulation
- 2. Synthesis
- 3. Analysis
- 4. Evaluation
- 5. Documentation
- 6. Reformulation type 1
- 7. Reformulation type 2
- 8. Reformulation type 3

(Gero & Kannengiesser, 2004)

Perspective for Structure-Behaviour Reasoning

Research Questions:

- 1. What types of students' structure-behaviour reasoning occurs during design activities?
- 2. What relationships can be identified between students' reasoning and the different stages of the design process?

The case: 'green bubble soap'

- Introduction about chemical technology and design.
- 10th grade secondary students design the perfect bubble soap to blow bubbles that live the longest.
- They were only allowed to use sustainable ingredients.
- Working in teams consisting of 2 students per team.
- While generating ideas or evaluating test results students were encouraged to explain their decisions by using Structure-Behaviour Reasoning.

-gineer:
Bespreking van de testresultaten.
Na de eerste testen zijn we er achter dat:
(macro niveau)
Conclusie. Dat is te verklaren door:
(micro niveau)
(micro niveau)
Keuzes voor verbetering van het ontwerp.
Om te zorgen dat onze bellen beter aan de eisen:
(macro niveau)
gaan voldoen moet onze vloeistof:
(micro niveau)
Daar kunnen we voor zorgen op deze manieren (3 ideeen) :
1
A.
2
3

Methodology

- Data gathering during student-centred practical work.
- Datasources:
 - 1. Transcripts of the audio recordings of 2 groups students' talk during the design.
 - 2. Annotations and drawings on the worksheets.
- Analysis using ATLAS.ti:
- First transcripts and worksheets were divided into sections and then marked according to the stage of the design process.
- Deductive coding of students' expressions using the perspective for SBR as an analytical lens.
- Subsequent grouping and axial coding of all the quotes with the applied code "SBR" uncovered themes and yielded characterisation of the expressed type of reasoning.
- The code co-occurrence tool in ATLAS.ti provided insight in SBR themes per stage of the design process.

Types of Structure – Behaviour reasoning

- A link between substances and their structural features:
 - Example:
- A link between the term '...molecule' and behaviour.
 - Example:
- A direct link between structural features and behaviour.

0=6-0

• Example:

Stages of the design proces in which SBR was identified

TUDelft

Concluding remarks

- RQ 1: What types of structure-behaviour reasoning occurred during design?
- Structure-Behaviour reasoning was found in 3 following ways:
 - As link between structural features and substances
 - As link between the term "...molecule" and behaviour of a substance
 - As a link between structures or characteristic moieties and behaviour of a substance
- RQ 2: What relationships can be identified between students' reasoning and the different stages of the design process.
- Students' reasoning was found during evaluation, discussion of results and ideation: stages in which students gave meaning to their observations.

Future work

- Perform the study on larger scale (minimum of 6 classrooms, 12 groups) to gain more in-depth analysis of types of reasoning within the FBS framework processes and how it can guide design thinking and thinking of complex systems.
- Focus on teacher interventions during processes of evaluation, ideation and reformulation type 1 (changes in terms
 of the structure variables or ranges of values for them). How do teacher interventions influence students' structurebehaviour reasoning during design activities.

Thank you for your attention

Sebastiaan V. P. de Lavoir

s.v.p.delavoir@tudelft.nl

